Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 17353, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2077112

RESUMEN

Acute kidney injury (AKI) is common in patients hospitalized for COVID-19, complicating their clinical course and contributing to worse outcomes. Animal studies show that adenosine, inosine and guanosine protect the kidney against some types of AKI. However, until now there was no evidence in patients supporting the possibility that abnormally low kidney levels of adenosine, inosine and guanosine contribute to AKI. Here, we addressed the question as to whether these renoprotective purines are altered in the urine of COVID-19 patients with AKI. Purines were measured by employing ultra-high-performance liquid chromatography-tandem mass spectrometry with stable-isotope-labeled internal standards for each purine of interest. Compared with COVID-19 patients without AKI (n = 23), COVID-19 patients with AKI (n = 20) had significantly lower urine levels of adenosine (P < 0.0001), inosine (P = 0.0008), and guanosine (P = 0.0008) (medians reduced by 85%, 48% and 61%, respectively) and lower levels (P = 0.0003; median reduced by 67%) of the 2nd messenger for A2A and A2B adenosine receptors, i.e., 3',5'-cAMP. Moreover, in COVID-19 patients with AKI, urine levels of 8-aminoguanine (endogenous inhibitor of inosine and guanosine metabolism) were nearly abolished (P < 0.0001). In contrast, the "upstream" precursors of renoprotective purines, namely 5'-AMP and 5'-GMP, were not significantly altered in COVID-19 patients with AKI, suggesting defective conversion of these precursors by CD73 (converts 5'-AMP to adenosine and 5'-GMP to guanosine). These findings imply that an imbalance in renoprotective purines may contribute to AKI in COVID-19 patients and that pharmacotherapy targeted to restore levels of renoprotective purines may attenuate the risk of AKI in susceptible patients with COVID-19.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Adenosina , Adenosina Monofosfato , Animales , Guanosina/metabolismo , Guanosina Monofosfato , Inosina/metabolismo , Purinas/metabolismo
2.
Front Immunol ; 13: 1007089, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2055023

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Asunto(s)
COVID-19 , Exorribonucleasas , IMP Deshidrogenasa , FN-kappa B , Proteínas no Estructurales Virales , Bortezomib , Citocinas/metabolismo , Exorribonucleasas/metabolismo , Humanos , IMP Deshidrogenasa/metabolismo , Inosina , Interleucina-6 , Interleucina-8 , Ácido Micofenólico , FN-kappa B/metabolismo , Oxidorreductasas , Proteómica , Ribavirina , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo
3.
Front Immunol ; 13: 818023, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1674343

RESUMEN

Alu retrotransposons belong to the class of short interspersed nuclear elements (SINEs). Alu RNA is abundant in cells and its repetitive structure forms double-stranded RNAs (dsRNA) that activate dsRNA sensors and trigger innate immune responses with significant pathological consequences. Mechanisms to prevent innate immune activation include deamination of adenosines to inosines in dsRNAs, referred to as A-to-I editing, degradation of Alu RNAs by endoribonucleases, and sequestration of Alu RNAs by RNA binding proteins. We have previously demonstrated that widespread loss of Alu RNA A-to-I editing is associated with diverse human diseases including viral (COVID-19, influenza) and autoimmune diseases (multiple sclerosis). Here we demonstrate loss of A-to-I editing in leukocytes is also associated with inflammatory bowel diseases. Our structure-function analysis demonstrates that ability to activate innate immune responses resides in the left arm of Alu RNA, requires a 5'-PPP, RIG-I is the major Alu dsRNA sensor, and A-to-I editing disrupts both structure and function. Further, edited Alu RNAs inhibit activity of unedited Alu RNAs. Altering Alu RNA nucleotide sequence increases biological activity. Two classes of Alu RNAs exist, one class stimulates both IRF and NF-kB transcriptional activity and a second class only stimulates IRF transcriptional activity. Thus, Alu RNAs play important roles in human disease but may also have therapeutic potential.


Asunto(s)
Elementos Alu/genética , Elementos Alu/inmunología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Adenosina , COVID-19 , Humanos , Inosina , ARN Bicatenario/genética , ARN Bicatenario/inmunología , SARS-CoV-2
4.
Genes (Basel) ; 13(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1580896

RESUMEN

ADAR1-mediated deamination of adenosines in long double-stranded RNAs plays an important role in modulating the innate immune response. However, recent investigations based on metatranscriptomic samples of COVID-19 patients and SARS-COV-2-infected Vero cells have recovered contrasting findings. Using RNAseq data from time course experiments of infected human cell lines and transcriptome data from Vero cells and clinical samples, we prove that A-to-G changes observed in SARS-COV-2 genomes represent genuine RNA editing events, likely mediated by ADAR1. While the A-to-I editing rate is generally low, changes are distributed along the entire viral genome, are overrepresented in exonic regions, and are (in the majority of cases) nonsynonymous. The impact of RNA editing on virus-host interactions could be relevant to identify potential targets for therapeutic interventions.


Asunto(s)
Adenosina Desaminasa/genética , COVID-19/genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Edición de ARN , ARN Viral/genética , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Adenosina/metabolismo , Adenosina Desaminasa/inmunología , Animales , COVID-19/metabolismo , COVID-19/virología , Línea Celular Tumoral , Chlorocebus aethiops , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Desaminación , Células Epiteliales/inmunología , Células Epiteliales/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inosina/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Interferón beta/genética , Interferón beta/inmunología , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN Viral/inmunología , Proteínas de Unión al ARN/inmunología , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Transcriptoma , Células Vero
5.
Nat Rev Immunol ; 20(11): 648-649, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1550308
6.
J Immunol ; 206(8): 1691-1696, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1158408

RESUMEN

Severe COVID-19 disease is associated with elevated inflammatory responses. One form of Aicardi-Goutières syndrome caused by inactivating mutations in ADAR results in reduced adenosine-to-inosine (A-to-I) editing of endogenous dsRNAs, induction of IFNs, IFN-stimulated genes, other inflammatory mediators, morbidity, and mortality. Alu elements, ∼10% of the human genome, are the most common A-to-I-editing sites. Using leukocyte whole-genome RNA-sequencing data, we found reduced A-to-I editing of Alu dsRNAs in patients with severe COVID-19 disease. Dendritic cells infected with COVID-19 also exhibit reduced A-to-I editing of Alu dsRNAs. Unedited Alu dsRNAs, but not edited Alu dsRNAs, are potent inducers of IRF and NF-κB transcriptional responses, IL6, IL8, and IFN-stimulated genes. Thus, decreased A-to-I editing that may lead to accumulation of unedited Alu dsRNAs and increased inflammatory responses is associated with severe COVID-19 disease.


Asunto(s)
Adenosina/genética , Elementos Alu/genética , COVID-19/genética , Inosina/genética , Edición de ARN/genética , ARN Bicatenario/genética , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Adenosina/metabolismo , COVID-19/patología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Genoma Humano , Humanos , Inosina/metabolismo , Factores Reguladores del Interferón/metabolismo , FN-kappa B/metabolismo , RNA-Seq , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA